A Borel–Cantelli lemma for intermittent interval maps

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dynamical Borel-cantelli Lemma for Interval Maps

Abstract. The dynamical Borel-Cantelli lemma for some interval maps is considered. For expanding maps whose derivative has bounded variation, any sequence of intervals satisfies the dynamical Borel-Cantelli lemma. If a map has an indifferent fixed point, then the dynamical Borel-Cantelli lemma does not hold even in the case that the map has a finite absolutely continuous invariant measure and s...

متن کامل

Large Deviations for Intermittent Maps

In this note we study large deviation results for the Manneville-Pomeau map and related transformations with indifferent fixed points. In particular, we consider conditions under which the associated error term is polynomial or even exponential. For typical observables, polynomial estimates are optimal. However, under suitable conditions, the exponential error term arises from the compactness o...

متن کامل

Cycle expansions for intermittent maps

Roberto Artuso†∗), Predrag Cvitanović †† and Gregor Tanner ††† ∗∗) †Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Università dell’Insubria and I.N.F.M., Sezione di Como, Via Valleggio 11, 22100 Como, Italy ††Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA ††† Quantum Information Processing Group, Hewlett-Packard Laboratori...

متن کامل

Dimension groups for interval maps

With each piecewise monotonic map τ of the unit interval, a dimension triple is associated. The dimension triple, viewed as a Z[t, t−1] module, is finitely generated, and generators are identified. Dimension groups are computed for Markov maps, unimodal maps, multimodal maps, and interval exchange maps. It is shown that the dimension group defined here is isomorphic to K0(A), where A is a C*-al...

متن کامل

Minor cycles for interval maps

For continuous maps of an interval into itself we consider cycles (periodic orbits) that are non-reducible in the sense that there is no non-trivial partition into blocks of consecutive points permuted by the map. Among them we identify the miror ones. They are those whose existence does not imply existence of other non-reducible cycles of the same period. Moreover, we find minor patterns of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2007

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/20/6/010